Fast Curing Polyurea Sealants: Controllable Reactivity with Commercially Available Secondary Amines

Dr. Jay Johnston
Bayer Material Science

Presented at a meeting of the Thermoset Resin Formulators Association at the Hyatt Regency Savannah in Savannah, Georgia, September 10 – 11, 2007

This paper is presented by invitation of TRFA. It is publicly distributed upon request by the TRFA to assist in the communication of information and viewpoints relevant to the thermoset industry. The paper and its contents have not been reviewed or evaluated by the TRFA and should not be construed as having been adopted or endorsed by the TRFA.
Fast Curing Polyurea Sealants: Controllable Reactivity with Commercially Available Secondary Amines
Why Does the Market Use Polyurea Sealants?

• Fast reactivity
• Fast return to service – used on airports runways
• Can cut flush to surface within 5 to 20 minutes
• Insensitivity to atmospheric and substrate moisture
• Prevents spalling of concrete into joint
• Cures at low temperatures – used in refrigerators
• Tunable physical properties
• 1 to 1 volume ratios - easy to meter
• Reduced VOCs versus other sealants – no VOCs possible
• Good adhesion to most substrates – adhesion promoters
• Plasticizer free formulations
Target Physical Properties of Polyurea Sealants

- Gel time – 5 to 20 minutes – optimum 10 minutes
- Longer than 15 minutes the sealant may foam
- Hardness – Shore A 85 to 90 preferred
- Tensile strength – optimum 1500 psi – not stronger than concrete
- Maximum elongation – As high as possible
- Tear resistance – 250 pli or higher
- 100% modulus – as low as possible
- Low temperature cure
Current Polyurea Sealant Formulations

- Primary amines react too rapidly for static mix tube applications
- 4,4’-SBMDA developed as a slower reacting amine
- Secondary diamines react slowly – polyurea sealants possible
- Aromatic structure

\[
\text{H} \quad \text{H} \\
(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3) \quad (\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3) \\
(\text{C}_6\text{H}_4) \quad (\text{C}_6\text{H}_4) \\
\text{N} \quad \text{N} \\
\text{H} \quad \text{H}
\]

4,4’-SBMDA
Typical Starting Point Formulation for Polyurea Sealant

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>JEFFAMINE® D-2000</td>
<td>40.25</td>
</tr>
<tr>
<td>4,4’-SBMDA</td>
<td>48.30</td>
</tr>
<tr>
<td>Titanium dioxide</td>
<td>9.35</td>
</tr>
<tr>
<td>TINUVIN® 292</td>
<td>0.46</td>
</tr>
<tr>
<td>TINUVIN® 1130</td>
<td>0.46</td>
</tr>
<tr>
<td>IRGANOX® 1135</td>
<td>0.94</td>
</tr>
</tbody>
</table>

- Typically applied 1 to 1 by volume with a 14-16% NCO prepolymer

¹Chemical Suppliers are on the last slide
Properties of 4,4’-SBMDA-based Sealants

- Used BAYTEC® MP-160 and a 14% NCO prepolymer
- 14% NCO prepolymer was blend of BAYTEC® MP-160 and DESMODUR® E 210
Gel Time of Polyurea Caulk

- **BAYTEC® MP-160**
 - Gel Time: 728B-16%
- **Blend**
 - Gel Time: 735A-14%
Hardness of Polyurea Caulk

Shore A Hardness

- BAYTEC® MP-160
- Blend

Values:
- 728B: 98
- 735A-14%: 92

Graph compares the hardness of Polyurea Caulk blends with BAYTEC® MP-160 and its blend.
Tensile Strength of Polyurea Caulk

- Too strong for most caulk applications
- Concrete will break before sealant

BAYTEC® MP-160

Strength is adequate

728B-16%

735A-14%

CAS September 2007 • Page # 10
Elongation of Polyurea Caulk

- BAYTEC® MP-160: 728B-16%
- Blend: 735A-14%

Good Elongation

Elongation (%)

- 728B-16%
- 735A-14%
Tear Resistance of Polyurea Caulk

- BAYTEC® MP-160 has good tear resistance.
- Blend has lower tear resistance compared to BAYTEC® MP-160.

Tear Resistance (pli):
- 728B-16%:
 - 600
- 735A-14%:
 - 400

CAS September 2007 • Page # 12
Evaluation of Aspartic Esters in Polyurea Sealant Formulations

• Objective – Evaluate aspartic ester amines in sealant formulations
• Reactivity of amines
 • DESMOPHEN® NH 1220 – very fast
 • DESMOPHEN® NH 1520 – very slow
 • DESMOPHEN® NH 1420 – close
• Blends of DESMOPHEN® NH 1520/DESMOPHEN® NH 1420 to adjust reactivity
Polyaspartic Esters

<table>
<thead>
<tr>
<th>DESMOPHEN®</th>
<th>NH-1520</th>
<th>NH-1420</th>
<th>NH-1220</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Solids</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Eq Wt</td>
<td>291</td>
<td>277</td>
<td>229</td>
</tr>
<tr>
<td>η at 25°C (cps)</td>
<td>1500</td>
<td>1500</td>
<td>150</td>
</tr>
<tr>
<td>Reactivity</td>
<td>low</td>
<td>mid</td>
<td>high</td>
</tr>
<tr>
<td>Amine</td>
<td>cycloaliphatic</td>
<td>cycloaliphatic</td>
<td>linear</td>
</tr>
</tbody>
</table>

![Chemical structures](image-url)
Reactivity of Aspartic Ester Blends

![Graph showing gel time for different concentrations of Desmophen NH 1520.]

- **14 % NCO Prepolymer**
- **No JEFFAMINES® in B-side**

Gel Time (m):
- 0%
- 25%
- 50%
- 75%
- 100%

Desmophen NH 1520 (%):
- 0%
- 25%
- 50%
- 75%
- 100%
Effect of Jeffamine on Aspartic Ester Formulations

Technically possible to make ultra slow polyurea caulks, but…….. JEFFAMINE® Free hides the true reactivity of the aspartic esters.
Optimization of Properties and Process

Molecular sieves increases window

NH 1520 (%) vs. NCO (%) chart:
- Foamy
- Brittle
- Shorter Gel Times <5M
- Window

CAS September 2007 • Page # 17
Index Study

• Determine the effects of index on the physical properties of polyurea sealants.
• Base study on DESMODUR® E 210 (commercial product)
• Try to optimize properties with the commercial isocyanate
Gel Time of Polyurea Caulk

Good gel times

Gel Time (m)

<table>
<thead>
<tr>
<th>Gel Time</th>
<th>763H</th>
<th>763E</th>
<th>763F</th>
<th>763A</th>
<th>763G</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td></td>
<td>100</td>
<td>105</td>
<td>107</td>
<td>110</td>
</tr>
</tbody>
</table>

Good gel times: 95, 100, 105, 107
Tensile Strength of Polyurea Caulk

Adequate tensile strength

<table>
<thead>
<tr>
<th>Material</th>
<th>100%</th>
<th>200%</th>
<th>300%</th>
</tr>
</thead>
<tbody>
<tr>
<td>763H</td>
<td>95</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>763E</td>
<td>100</td>
<td>105</td>
<td>107</td>
</tr>
<tr>
<td>763F</td>
<td>100</td>
<td>105</td>
<td>107</td>
</tr>
<tr>
<td>763A</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>763G</td>
<td>110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Elongation of Polyurea Caulk

Good elongations

Elongation (%)

763H: 95
763E: 100
763F: 105
763A: 107
763G: 110
Tear Resistance of Polyurea Caulk

![Bar chart showing tear resistance values for Polyurea Caulk samples 763H, 763E, 763F, 763A, and 763G. The values range from 95 to 110 pli.](image)
Properties of Optimized Desmodur® E 210 Polyurea Formulations

<table>
<thead>
<tr>
<th>Formulation</th>
<th>JEFFAMINE® D-2000*</th>
<th>DESMOPHEN® NH 1420</th>
<th>TINUVIN® 292</th>
<th>TINUVIN® 1130</th>
<th>IRGANOX® 1135</th>
<th>KRONOS®, TiO₂</th>
<th>Gel Time (m)</th>
<th>Shore A Hardness</th>
<th>Tensile Strength (psi)</th>
<th>100% Modulus (psi)</th>
<th>200 % Modulus (psi)</th>
<th>300 % Modulus (psi)</th>
<th>Maximum elongation (%)</th>
<th>Tear Resistance (pli)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41.28</td>
<td>47.67</td>
<td>0.24</td>
<td>0.24</td>
<td>0.49</td>
<td>9.82</td>
<td>6.1</td>
<td>91</td>
<td>1218</td>
<td>689</td>
<td>876</td>
<td>1091</td>
<td>352</td>
<td>341</td>
</tr>
<tr>
<td>2</td>
<td>38.00</td>
<td>51.75</td>
<td>0.25</td>
<td>0.25</td>
<td>0.50</td>
<td>5.00</td>
<td>9.5</td>
<td>91</td>
<td>914</td>
<td>502</td>
<td>611</td>
<td>720</td>
<td>450</td>
<td>288</td>
</tr>
</tbody>
</table>

*Blend reacted 1 to 1 with DESMODUR® E 210
UV Stability of Polyurea Caulks

• Compare standard polyurea sealant formulations with aspartic ester-based sealant formulations
• Tested using Xenon Arc weatherometer
• ASTM G 155*, cycle #1, 1000 h
 – 102 minute cycle no spray – 63 C black panel
 – 18 minute cycle with spray
 – 45 C conditioning water

*same as ASTM D6695 cycle #1 or ASTM D2565-99 cycle #1
500 H Xenon Arc
Aromatic Amine

930776A

500 H Xenon Arc
Aspartic Esters

930776B

OCT 19 2006
Low Temperature Performance

- Polyurea sealants are often used in low temperature applications
- Epoxies and polyurethanes do not cure as well as the temperature is lowered
- Polyurea sealants are often used in refrigerators
- Can be used in exterior applications where other sealants will not cure

Why Do Polyurea Sealants Cure at < 0 C?
Higher NCO content prepolymers evolve more energy
Lower NCO content evolves less energy
Aspartic ester amines react slower

Tested at 20 C
Polyurea Sealant Exotherm

Higher starting temperature – higher exotherm

Must keep resin warm before mixing
Increased Low Temperature Reactivity by Blending Amines

25% DESMOPHEN® NH 1220/
75% DESMOPHEN® NH 1420
Low Temperature Cure

• Higher NCO prepolymerers evolve more heat
• Higher NCO prepolymerers reach a higher exotherm temperature
• Aspartic ester-based formulations are designed to react slower
• Chemicals must be kept warm
• DESMOPHEN® NH 1220 can be used to speed up low temperature reactions
Advantages of Aspartic Esters in Polyurea Sealant Formulations

• Wide latitude in gel times
• Faster systems possible
• Slower systems possible
• Improved UV stability
• Improved color stability
• More economical formulations
• Plasticizer free formulations
Conclusions

• Aspartic ester can be used in polyurea sealants
• NCO content of the prepolymer must be lower with aspartic ester amine formulations
• UV stability is improved with aspartic ester b-side formulations
• Low temperature cure will still occur with aspartic ester technology
• Systems based on high NCO prepolymer will release more energy at low temperatures
• Keeping the B-side component warm is important in low temperature applications
• Plasticizer free formulations are possible
Acknowledgements

• Jeff Loh
• Cathy Britsch
• Sandy Zielinski
• Don Smith
• Jennifer Grzybowski
• Jeff Dormish
Important Information

This information and our technical advice – whether verbal, in writing or by way of trials – are given in good faith but without warranty, and this also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to check its validity and to test our products as to their suitability for the intended processes and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely your responsibility. Our products and technical service are provided in accordance with our General Conditions of Sale and Delivery.
Contact Information

Dr. Jay A. Johnston
100 Bayer Road, Bld. 8
Pittsburgh, PA 15205
412-777-2512
jay.johnston@bayerbms.com
Chemical Suppliers

- JEFFAMINE® is a registered trademark of Huntsman Corporation
- TINUVIN® and IRGANOX® are registered trademarks of Ciba Specialty Chemicals, Inc.
- KRONOS® is a registered trademark of NL Industries, Inc.
- BAYTEC®, DESMODUR®, and DESMOPHEN® are registered trademarks of Bayer Corporation